Ôn đúng trọng tâm – Học chắc từ hôm nay
Hệ thống lại kiến thức lớp 10–11–12
Tính thể tích \(V\)của khối cầu ngoại tiếp hình lập phương có cạnh \(a\).
Giải chi tiết:
Khối cầu ngoại tiếp hình lập phương cạnh \(a\) có bán kính \(R = \frac{{a\sqrt 3 }}{2}\)
Thể tích khối cầu là \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\frac{{a\sqrt 3 }}{2}} \right)^3} = \frac{{\pi {a^3}\sqrt 3 }}{2}\)
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.