Tính giá trị của biểu thức \(P = \frac{{{{ \left( {4 + 2 \sqrt 3 } \right)}^{2018}}.{{ \left( {1 - \sqrt 3 } \right)}^{2017}}}}{{{{ \left( {1 + \sqrt 3 } \right)}^{2019}}}} \).
Giải chi tiết:
Ta có: \(P = \frac{{{{\left( {4 + 2\sqrt 3 } \right)}^{2018}}.{{\left( {1 - \sqrt 3 } \right)}^{2017}}}}{{{{\left( {1 + \sqrt 3 } \right)}^{2019}}}} = \frac{{{{\left( {{{\left( {\sqrt 3 + 1} \right)}^2}} \right)}^{2018}}.{{\left( {1 - \sqrt 3 } \right)}^{2017}}}}{{{{\left( {1 + \sqrt 3 } \right)}^{2019}}}} = \frac{{{{\left( {\sqrt 3 + 1} \right)}^{4036}}.{{\left( {1 - \sqrt 3 } \right)}^{2017}}}}{{{{\left( {1 + \sqrt 3 } \right)}^{2019}}}}\)
\( = {\left( {\sqrt 3 + 1} \right)^{2017}}.{\left( {1 - \sqrt 3 } \right)^{2017}} = {\left[ {\left( {\sqrt 3 + 1} \right)\left( {1 - \sqrt 3 } \right)} \right]^{2017}} = {\left( { - 2} \right)^{2017}} = - {2^{2017}}\)
Chọn: A
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.