[LỜI GIẢI] Tính đạo hàm của hàm số y = 1 - x2^x - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tính đạo hàm của hàm số y = 1 - x2^x

Tính đạo hàm của hàm số y = 1 - x2^x

Câu hỏi

Nhận biết

Tính đạo hàm của hàm số \(y = \frac{{1 - x}}{{{2^x}}} \)


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Ta có : \(y' = {\left( {\frac{{1 - x}}{{{2^x}}}} \right)^\prime } = \frac{{ - {2^x} - \left( {1 - x} \right){{.2}^x}.\ln 2}}{{{2^{2x}}}} = \frac{{ - 1 + \left( {x - 1} \right)\ln 2}}{{{2^x}}}\)

Chọn  D.

Ý kiến của bạn