Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = mx - \sin x\) đồng biến trên \(\mathbb{R}.\)
Giải chi tiết:
Lời giải chi tiết.
Để hàm số đã cho đồng biến trên \(\mathbb{R}\) thì điều kiện cần và đủ là \(y'\ge 0\Leftrightarrow \left( mx-\sin x \right)'\ge 0\Leftrightarrow m-\cos x\ge 0\Leftrightarrow m\ge \cos x\,,\forall x\in \mathbb{R}.\)
Do \(-1\le \cos x\le 1,\forall x\in \mathbb{R},\) nên ta có \(m\ge \cos x,\,\forall x\in \mathbb{R}\Leftrightarrow m\ge 1.\)
Chọn đáp án C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.