Tìm tất cả các giá trị thực của tham số \(m\) để hàm số: \(y = \dfrac{{ - 1}}{3}{x^3} - 2m{x^2} + mx + 1\) có 2 điểm cực trị \({x_1},\,\,{x_2}\) nằm về 2 phía trục \(Oy\).
Giải chi tiết:
\(y = \dfrac{{ - 1}}{3}{x^3} - 2m{x^2} + mx + 1 \Rightarrow y' = - {x^2} - 4mx + m\)
Đồ thị hàm số có 2 điểm cực trị x1, x2 nằm về 2 phía trục Oy \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\{x_1}.{x_2} < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} + m > 0\\ - m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - \dfrac{1}{4}\end{array} \right.\\m > 0\end{array} \right. \Leftrightarrow m > 0\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.