Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y=mx-m-1\) cắt đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+x\) tại ba điểm A, B, C phân biệt sao cho AB = BC.
Giải chi tiết:
Phương trình hoành độ giao điểm của đường thẳng \(y=mx-m-1\) và đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+x\) là
\(\begin{array}{l}{x^3} - 3{x^2} + x = mx - m - 1\\ \Leftrightarrow {x^3} - 3{x^2} + \left( {1 - m} \right)x + m + 1 = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 1 - m} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} - 2x - 1 - m = 0\,\,\left( * \right)\end{array} \right.\end{array}\)
Đường thẳng cắt đồ thị tại 3 điểm phân biệt A, B, C khi và chỉ khi
\(\left\{ \begin{array}{l}{1^2} - 2.1 - 1 - m \ne 0\\\Delta {'_{\left( * \right)}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne - 2\\m > - 2\end{array} \right. \Leftrightarrow m > - 2\)
Dựa vào các đáp án đầu bài ra đến đây ta đã có thể kết luận đáp án đúng là C.
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.