Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _2}\left( {{{2.5}^x} - 2} \right) \ge m\) có tập nghiệm là \(\left[ {1; + \infty } \right)\)?
Giải chi tiết:
Ta có: \({\log _2}\left( {{5^x} - 1} \right).{\log _2}\left( {{{2.5}^x} - 2} \right) \ge m\) \( \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).{\log _2}\left[ {2.\left( {{5^x} - 1} \right)} \right] \ge m\) \( \Leftrightarrow {\log _2}\left( {{5^x} - 1} \right).\left[ {1 + {{\log }_2}\left( {{5^x} - 1} \right)} \right] \ge m\).
Đặt \({\log _2}\left( {{5^x} - 1} \right) = t\). \(x \in \left[ {1; + \infty } \right) \Rightarrow {5^x} - 1 \ge 4 \Rightarrow t = {\log _2}\left( {{5^x} - 1} \right) \ge {\log _2}4 = 2 \Rightarrow t \ge 2\).
Khi đó bất phương trình trên trở thành \(t.\left( {1 + t} \right) \ge m \Leftrightarrow {t^2} + t \ge m\,\,\left( * \right)\).
Bài toán thỏa \( \Leftrightarrow \left( * \right)\) có tập nghiệm \(\left[ {2; + \infty } \right)\) hay \(\left( * \right)\) luôn đúng với mọi \(t \ge 2\) \( \Leftrightarrow \mathop {\min }\limits_{t \ge 2} \left( {{t^2} + t} \right) \ge m\).
Xét \(f\left( t \right) = {t^2} + t \Rightarrow f'\left( t \right) = 2t + 1 > 0,\forall t \ge 2\).
Do đó \(m \le \mathop {\min }\limits_{t \ge 2} f\left( t \right) = f\left( 2 \right) = 6 \Rightarrow m \le 6\).
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.