Tìm tất cả các giá trị của m để phương trình \(m\sqrt {{x^2} + 2} = x + m\) có 3 nghiệm phân biệt
Giải chi tiết:
Ta có
\(\begin{array}{l}\,\,\,\,\,\,\,\,m\sqrt {{x^2} + 2} = x + m\ \Leftrightarrow m\left( {\sqrt {{x^2} + 2} - 1} \right) = x\ \Leftrightarrow m = \dfrac{x}{{\sqrt {{x^2} + 2} - 1}} = f\left( x \right)\,\,\,\left( {x \in \mathbb{R}} \right)\ \Rightarrow f'\left( x \right) = \dfrac{{2 - \sqrt {{x^2} + 2} }}{{{{\left( {\sqrt {{x^2} + 2} - 1} \right)}^2}}} = 0 \Leftrightarrow x = \pm \sqrt 2 \end{array}\)
Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy để hàm số đã cho có 2 nghiệm thì \(\left[ \begin{array}{l} - \sqrt 2 < m < - 1\1 < m < \sqrt 2 \end{array} \right.\).
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.