Tìm tất cả các giá trị của m để hàm số \(y = { \cos ^3}x - 3{ \sin ^2}x - m \cos x - 1 \) đồng biến trên đoạn \( \left[ {0; \dfrac{ \pi }{2}} \right]. \)
Giải chi tiết:
Xét hàm số\(y = {\cos ^3}x - 3{\sin ^2}x - m\cos x - 1\) trên \(\left[ {0;\dfrac{\pi }{2}} \right]\).
Ta có:
\(\begin{array}{l}y = {\cos ^3}x - 3{\sin ^2}x - m\cos x - 1\\y = {\cos ^3}x - 3\left( {1 - {{\cos }^2}x} \right) - m\cos x - 1\\y = {\cos ^3}x + 3{\cos ^2}x - m\cos x - 4\end{array}\)
Đặt \(t = \cos x\), với \(x \in \left[ {0;\dfrac{\pi }{2}} \right]\) thì hàm số \(t\left( x \right) = \cos x\) nghịch biến trên \(\left[ {0;\dfrac{\pi }{2}} \right]\) và \(t \in \left[ {0;1} \right]\).
Khi đó bài toán trở thành tìm\(m\) để hàm số \(y = {t^3} + 3{t^2} - mt - 4\) nghịch biến trên \(\left[ {0;1} \right]\).
\(\begin{array}{l} \Rightarrow y' = 3{t^2} + 6t - m \le 0\,\,\forall t \in \left[ {0;1} \right]\\ \Leftrightarrow m \ge 3{t^2} + 6t\,\,\,\forall t \in \left[ {0;1} \right]\,\,\,\,\left( 1 \right)\end{array}\)
Xét hàm số \(f\left( t \right) = 3{t^2} + 6t\) trên \(\left[ {0;1} \right]\) ta có: \(f'\left( t \right) = 6t + 6 = 0 \Leftrightarrow t = - 1.\)
Bảng biến thiên:

Dựa vào bảng biến thiên ta có bất đẳng thức (1) xảy ra \( \Leftrightarrow m \ge \mathop {\max }\limits_{\left[ {0;1} \right]} f\left( t \right) \Leftrightarrow m \ge 9.\).
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.