Tìm tập nghiệm S của bất phương trình \(\log _2^2x - 5{\log _2}x + 4 \ge 0\)
Cách giải nhanh bài tập này
Điều kiện: \(x > 0.\)
\(\begin{array}{l}BPT \Leftrightarrow \left( {{{\log }_2}x - 1} \right)\left( {{{\log }_2}x - 4} \right) \ge 0\\\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}{\log _2}x \ge 4\\{\log _2}x \le 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge {2^4}\\0 < x \le {2^1}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 16\\0 < x \le 2\end{array} \right.\\\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow x \in \left( {0;2} \right] \cup \left[ {16; + \infty } \right)\end{array}\)
Chọn C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.