Tìm số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} - 3x - 4}}{{{x^2} - 16}}.\)
Giải chi tiết:
Ta có: \(y = \frac{{{x^2} - 3x - 4}}{{{x^2} - 16}}\)\( = \frac{{\left( {x + 1} \right)\left( {x - 4} \right)}}{{\left( {x + 4} \right)\left( {x - 4} \right)}} = \frac{{x + 1}}{{x + 4}}.\)
\( \Rightarrow \) Đồ thị hàm số có 1 tiệm cận đứng là: \(x = - 4.\)
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.