Tìm \(m \) để đường thẳng \(y=mx+1 \) cắt đồ thị hàm số \(y= \frac{x+1}{x-1} \) tại hai điểm thuộc hai nhánh của đồ thị.
Giải chi tiết:
Phương trình hoành độ giao điểm là:
\(mx + 1 = \frac{{x + 1}}{{x - 1}} \Leftrightarrow \left\{ \begin{array}{l}
x \ne 1\\
\left( {mx + 1} \right)\left( {x - 1} \right) = x + 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ne 1\\
f\left( x \right) = m{x^2} - mx - 2 = 0{\rm{ }}\left( 1 \right)
\end{array} \right.\)
Theo hệ thức Vi-et ta có: \(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=1 \\ & {{x}_{1}}{{x}_{2}}=\frac{-2}{m} \\ \end{align} \right..\)
Đường thẳng \(y=mx+1\) cắt đồ thị hàm số \(y=\frac{x+1}{x-1}\) tại hai điểm thuộc hai nhánh của đồ thị \(\Leftrightarrow \)\(\left( 1 \right)\) có hai nghiệm phân biệt \({{x}_{1}}\), \({{x}_{2}}\) khác \(1\) thỏa mãn \(\left( {{x}_{1}}-1 \right)\left( {{x}_{2}}-1 \right)<0\)
\( \Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
\Delta = {m^2} + 8m > 0\\
f\left( 1 \right) \ne 0\\
{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
\left[ \begin{array}{l}
m > 0\\
m < - 8
\end{array} \right.\\
m{.1^2} - m.1 - 2 \ne 0\\
- \frac{2}{m} - 1 + 1 < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m > 0\\
m < - 8
\end{array} \right.\\
m \in \\
\frac{2}{m} > 0
\end{array} \right. \Leftrightarrow m > 0\)
Chọn B
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.