Tìm họ nguyên hàm của hàm số \(f(x)={{\tan }^{5}}x\).
Giải chi tiết:
\(I=\int{f(x)dx}=\int{{{\tan }^{5}}xdx}\). Đặt \(\tan \,x=t\Rightarrow \frac{dx}{{{\cos }^{2}}x}=dt\Rightarrow ({{\tan }^{2}}x+1)dx=dt\Rightarrow dx=\frac{dt}{{{t}^{2}}+1}\)
Khi đó:
\(\begin{array}{l}I = \int {{t^5}.\frac{{dt}}{{{t^2} + 1}}} = \int {({t^3} - t + \frac{t}{{{t^2} + 1}})dt} = \int {{t^3}dt} - \int {tdt} + \int {\frac{t}{{{t^2} + 1}}dt} \\ = \frac{1}{4}{t^4} - \frac{1}{2}{t^2} + \frac{1}{2}\int {\frac{{d({t^2} + 1)}}{{{t^2} + 1}}} = \frac{1}{4}{t^4} - \frac{1}{2}{t^2} + \frac{1}{2}\ln \left| {{t^2} + 1} \right| + C\\ = \frac{1}{4}{\tan ^4}x - \frac{1}{2}{\tan ^2}x + \frac{1}{2}\ln \left( {{{\tan }^2}x + 1} \right) + C\\ = \frac{1}{4}{\tan ^4}x - \frac{1}{2}{\tan ^2}x + \frac{1}{2}\ln \left( {\frac{1}{{{{\cos }^2}x}}} \right) + C\\ = \frac{1}{4}{\tan ^4}x - \frac{1}{2}{\tan ^2}x - \ln \left| {\cos x} \right| + C\end{array}\)
Chọn: B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.