Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển của nhị thức \({\left( {a + 2b} \right)^5}\).
Giải chi tiết:
Ta có: \({\left( {a + 2b} \right)^5} = \sum\limits_{k = 0}^5 {C_5^k{a^k}{{\left( {2b} \right)}^{5 - k}}} = \sum\limits_{k = 0}^5 {C_5^k{a^k}{2^{5 - k}}.{b^{5 - k}}} \)
Hệ số của \({a^3}{b^2}\) ứng với \(\left\{ \begin{array}{l}k = 3\\5 - k = 2\end{array} \right. \Leftrightarrow k = 3 \Rightarrow \) Hệ số của đơn thức \({a^3}{b^2}\) là \({2^2}C_5^3 = 40\).
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.