Tìm giá trị nhỏ nhất của hàm số \(y = x{e^x}\) trên đoạn \(\left[ {1;2} \right]\).
Giải chi tiết:
+ TXĐ: \(D = \left[ {1;2} \right]\)
+ \(y' = {e^x} - x.{e^x} = 0 \Leftrightarrow {e^x}\left( {1 - x} \right) = 0 \Leftrightarrow 1 - x = 0 \Leftrightarrow x = 1\,\,\,\left( {tm} \right)\)
+ \(f\left( 1 \right) = 1.{e^1} = e;\,\,\,f\left( 2 \right) = 2.{e^2}.\)
Vậy \(\mathop {\min }\limits_{\left[ {1;2} \right]} y = e\).
Chọn B
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.