Tìm giá trị nhỏ nhất của hàm số \(y = \frac{{2x - 1}}{{ - x + 1}}\) trên đoạn \(\left[ {2;3} \right]\).
Giải chi tiết:
TXĐ: \(D = R\backslash \left\{ 1 \right\}\). Ta có: \(y' = \frac{3}{{{{\left( { - x + 1} \right)}^2}}} > 0\,\,\forall x \in R\backslash \left\{ 1 \right\} \Rightarrow \) Hàm số đồng biến trên \(\left[ {2;3} \right]\).
\( \Rightarrow \mathop {\min }\limits_{\left[ {2;3} \right]} y = y\left( 2 \right) = \frac{{2.2 + 1}}{{ - 2 + 1}} = - 5\).
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.