[LỜI GIẢI] Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh Ox của hình giới hạn bởi trục Ox và parabol - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh Ox của hình giới hạn bởi trục Ox và parabol

Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh Ox của hình giới hạn bởi trục Ox và parabol

Câu hỏi

Nhận biết

Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh \(Ox\) của hình giới hạn bởi trục \(Ox\) và parabol \(\left( P \right):y={{x}^{2}}-ax\,\,\,\,\left( a>0 \right)\) bằng \(V=2.\) Khẳng định nào dưới đây đúng ?


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Phương trình hoành độ giao điểm của \(\left( P \right)\) và \(Ox\) là \({{x}^{2}}-ax=0\Leftrightarrow \left[ \begin{align}  & x=0 \\ & x=a \\\end{align} \right..\)

Khi đó, thể tích cần xác định cho bởi \(V=\pi \int\limits_{0}^{a}{{{\left( {{x}^{2}}-ax \right)}^{2}}\text{d}x}=\pi \int\limits_{0}^{a}{\left( {{x}^{4}}-2a{{x}^{3}}+{{a}^{2}}{{x}^{2}} \right)\text{d}x}\)

\(=\pi \left. \left( \frac{{{x}^{5}}}{5}-\frac{a{{x}^{4}}}{2}+\frac{{{a}^{2}}{{x}^{3}}}{3} \right) \right|_{0}^{a}=\frac{\pi {{a}^{5}}}{30}.\) Mặt khác \(V=2\Rightarrow \frac{\pi {{a}^{5}}}{30}=2\Leftrightarrow a=\sqrt[5]{{\frac{{60}}{\pi }}}\in \left( \frac{3}{2};2 \right).\)

Chọn C.

Ý kiến của bạn