Thầy Quang thanh toán tiền mua xe bằng các kỳ khoản năm : 5.000.000 đồng, 6.000.000 đồng, 10.000.000 đồng và 20.000.000 đồng. Kỳ khoản thanh toán 1 năm sau ngày mua. Với lãi suất áp dụng là 8%. Hỏi giá trị của chiếc xe thầy Quang mua là bao nhiêu ?
Giải chi tiết:
Kỳ khoản thanh toán 1 năm sau ngày mua là 5.000.000 đồng, qua năm 2 sẽ thanh toán 6.000.000 đồng, qua năm 3 sẽ thanh toán là 10.000.000 đồng và qua năm 4 sẽ thanh toán 20.000.000 đồng. Các khoản tiền này đã có lãi trong đó.
Do đó giá trị chiếc xe bằng tổng các khoản tiền lúc chưa có lãi.
Ta có \({{A}_{n}}=A.{{\left( 1+r \right)}^{n}}\Rightarrow A={{A}_{n}}.{{\left( 1+r \right)}^{-n}}\)
Goi A0 là tiền ban đầu mua chiếc xe
\(\Rightarrow {{A}_{0}}={{5.1,08}^{-1}}+{{6.1,08}^{-2}}+{{10.1,08}^{-3}}+{{20.1,08}^{-4}}=32,412582\) (triệu đồng) = 32.412.582 đồng.
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.