Tập nghiệm của bất phương trình \({ \left( {0,1} \right)^{{x^2} + x}} > 0,01 \) là
Giải chi tiết:
Ta có
\({\left( {0,1} \right)^{{x^2} + x}} > 0,01 \Leftrightarrow {\left( {0,1} \right)^{{x^2} + x}} > {\left( {0,1} \right)^2} \Leftrightarrow {x^2} + x < 2 \Leftrightarrow {x^2} + x - 2 < 0\)\( \Leftrightarrow - 2 < x < 1\)
Tập nghiệm của bất phương trình là \(S = \left( { - 2;1} \right)\)
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.