Số giao điểm của đồ thị hàm số \(y = {x^3} - 3x + 1 \) và đường thẳng \(y = 3 \) là
Giải chi tiết:
Phương trình hoành độ giao điểm:
\({x^3} - 3x + 1 = 3 \Leftrightarrow {x^3} - 3x - 2 = 0 \Leftrightarrow \left( {x - 2} \right){\left( {x + 1} \right)^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right.\).
Vậy phương trình có hai nghiệm số giao điểm của đường thẳng và đồ thị hàm số là \(2\).
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.