Phương trình \(\sin x = \cos x\) có số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) là:
Giải chi tiết:
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\sin \,x = \cos x \Leftrightarrow \sin \,x = \sin \left( {\dfrac{\pi }{2} - x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} - x + k2\pi \\x = \pi - \dfrac{\pi }{2} + x + k2\pi \,\,\left( {vo\,\,nghiem} \right)\end{array} \right.\\ \Leftrightarrow 2x = \dfrac{\pi }{2} + k2\pi \Leftrightarrow x = \dfrac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Trên \(\left[ { - \pi ;\pi } \right]\) phương trình có 2 nghiệm \(x = \dfrac{{ - 3\pi }}{4};\,\,x = \dfrac{\pi }{4}\).
Chọn C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.