[LỜI GIẢI] Phương trình sin ^2x + căn 3 sin xcos x = 1 có bao nhiêu nghiệm thuộc [ 0;3pi ]. - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Phương trình sin ^2x + căn 3 sin xcos x = 1 có bao nhiêu nghiệm thuộc [ 0;3pi ].

Phương trình sin ^2x + căn 3 sin xcos x = 1 có bao nhiêu nghiệm thuộc [ 0;3pi ].

Câu hỏi

Nhận biết

Phương trình \({\sin ^2}x + \sqrt 3 \sin x\cos x = 1\) có bao nhiêu nghiệm thuộc \(\left[ {0;3\pi } \right]\).


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

TH1: \(\cos x = 0 \Leftrightarrow x = \dfrac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right) \Rightarrow {\sin ^2}x = 1\), khi đó phương trình trở thành \(1 = 1\) (luôn đúng)

\( \Rightarrow x = \dfrac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\) là nghiệm của phương trình.

\(x \in \left[ {0;3\pi } \right] \Rightarrow 0 \le \dfrac{\pi }{2} + k\pi  \le 3\pi  \Leftrightarrow  - \dfrac{1}{2} \le k \le \dfrac{5}{2}\,\left( {k \in Z} \right) \Leftrightarrow k \in \left\{ {0;1;2} \right\}\).

TH2: \(\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\). Chia cả 2 vế của phương trình cho \({\cos ^2}x\) ta được:

\(\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \sqrt 3 \dfrac{{\sin x}}{{\cos x}} = \dfrac{1}{{{{\cos }^2}x}} \Leftrightarrow {\tan ^2}x + \sqrt 3 \tan x = 1 + {\tan ^2}x \Leftrightarrow \tan x = \dfrac{1}{{\sqrt 3 }} \Leftrightarrow x = \dfrac{\pi }{6} + k\pi \,\,\left( {k \in Z} \right)\)

\(x \in \left[ {0;3\pi } \right] \Rightarrow 0 \le \dfrac{\pi }{6} + k\pi  \le 3\pi  \Leftrightarrow  - \dfrac{1}{6} \le k \le \dfrac{{17}}{6}\,\left( {k \in Z} \right) \Leftrightarrow k \in \left\{ {0;1;2} \right\}\).

Vậy phương trình đã cho có 6 nghiệm thỏa mãn yêu cầu bài toán.

Chọn B.

Ý kiến của bạn