Phương trình đường tròn (C) có tâm \(I(6;-7)\) và tiếp xúc với đường thẳng Ox là:
Giải chi tiết:
\(\left( C \right)\) tiếp xúc \(\text{Ox}\Rightarrow R=d\left( I,\text{Ox} \right)\). Mặt khác \(I\left( 6;-7 \right)\Rightarrow R=|-7|=7\)
\(\left( C \right)\) tâm \(I(6;-7),\,R=7\Rightarrow \left( C \right):{{\left( x-6 \right)}^{2}}+{{\left( y+7 \right)}^{2}}={{7}^{2}}\)
\(\begin{array}{l} \Leftrightarrow {x^2} - 12x + 36 + {y^2} + 14y + 49 = 49\\ \Leftrightarrow {x^2} + {y^2} - 12x + 14y + 36 = 0\end{array}\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.