Phương trình đường tròn (C) có tâm \(I(2;-4)\) và đi qua điểm \(A(1;3)\) là:
Giải chi tiết:
Ta có: \(R=IA=\sqrt{{{\left( 1-2 \right)}^{2}}+{{\left( 3+4 \right)}^{2}}}=\sqrt{50}\)
Phương trình đường tròn (C) có tâm \(I\left( 2;-4 \right)\)có bán kính \(R=\sqrt{50}\) là: \({{\left( x-2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}=50.\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.