Phương trình \(2{\cos ^2}x = 1\) có tập nghiệm được biểu diễn bởi bao nhiêu điểm trên đường tròn lượng giác?
Giải chi tiết:
Ta có: \(2{\cos ^2}x = 1 \Leftrightarrow 2{\cos ^2}x - 1 = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \dfrac{\pi }{2} + k\pi \Leftrightarrow x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\,\,\left( {k \in Z} \right)\)
Biểu diễn tập nghiệm trên đường tròn lượng giác ta được 4 điểm
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.