[LỜI GIẢI] Ông A dự định sử dụng hết 5m^2 kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp chiều - Tự Học 365
KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY

Hệ thống lại kiến thức lớp 10–11–12

Ông A dự định sử dụng hết 5m^2 kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp chiều

Ông A dự định sử dụng hết 5m^2 kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp chiều

Câu hỏi

Nhận biết

Ông \(A\) dự định sử dụng hết \(5{m^2}\) kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Gọi chều dài, chiều rộng và chiều cao của bể cá lần lượt là \(a;b;c\left( {a;b;c > 0} \right)\)

Theo đề bài ta có \(a = 2b\) .

Vì ông \(A\) sử dụng \(5{m^2}\) kính để làm bể cá không nắp nên diện tích toàn phần (bỏ 1 mặt đáy) của hình hộp là \(5\,{m^2}.\)

Hay \(ab + 2bc + 2ac = 5\) mà \(a = 2b\) nên

\(2{b^2} + 2bc + 4bc = 5 \Leftrightarrow 2{b^2} + 6bc = 5 \Rightarrow c = \dfrac{{5 - 2{b^2}}}{{6b}}\)

Thể tích bể cá là \(V = abc = 2b.b.\dfrac{{5 - 2{b^2}}}{{6b}} = \dfrac{{ - 2{b^3} + 5{b}}}{3}\)

Xét hàm số \(f\left( b \right) = \dfrac{{ - 2{b^3} + 5b}}{3}\,\,\,\left( {b > 0} \right) \Rightarrow f'\left( b \right) = \dfrac{{ - 6{b^2} + 5}}{3} = 0 \Rightarrow \left[ \begin{array}{l}b =  - \sqrt {\dfrac{5}{6}} \,\,\left( {ktm} \right)\\b = \sqrt {\dfrac{5}{6}} \,\,\left( {tm} \right)\end{array} \right.\) (vì \(b > 0\))

Ta có BBT của \(y = f\left( b \right)\).

Từ BBT suy ra \(\max f\left( b \right) = \dfrac{{5\sqrt {30} }}{{27}} \simeq 1,01 \Leftrightarrow b = \sqrt {\dfrac{5}{6}} \)

Chọn D.

Ý kiến của bạn