Nguyên hàm của hàm số \(f\left( x \right) = {e^{3x}}{.3^x}\) là:
Giải chi tiết:
\(\int {f\left( x \right)dx} = \int {{e^{3x}}{{.3}^x}} dx = \int {{{\left( {3{e^3}} \right)}^x}} dx = \frac{{{{\left( {3{e^3}} \right)}^x}}}{{\ln \left( {3{e^3}} \right)}} + C = \frac{{{3^x}{e^{3x}}}}{{\ln 3 + 3}} + C\).
Chọn: D
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.