Ôn đúng trọng tâm – Học chắc từ hôm nay
Hệ thống lại kiến thức lớp 10–11–12
Một viên gạch hoa hình vuông cạnh \(40\(cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm của viên gạch để tạo ra bốn cánh hoa (được tô màu sẫm như hình vẽ bên). Diện tích mỗi cánh hoa của viên gạch bằng

Giải chi tiết:
Chọn hệ trục tọa độ như hình vẽ:
Với \(A\left( 20;20 \right)\), xét hình phẳng ở góc phân tư thứ nhất.
Hai Parbol có phương lần lượt là: \(y=a{{x}^{2}}\,\,\left( {{P}_{1}} \right)\) và \(x=a{{y}^{2}}\,\,\left( {{P}_{2}} \right)\)
Do Parabol \(\left( {{P}_{1}} \right)\) qua điểm \(A\left( 20;20 \right)\Rightarrow a=\frac{20}{{{20}^{2}}}=\frac{1}{20}\Rightarrow y=\frac{{{x}^{2}}}{20}\)
Do Parabol \(\left( {{P}_{2}} \right)\) qua điểm \(A\left( 20;20 \right)\Rightarrow a=\frac{20}{{{20}^{2}}}=\frac{1}{20}\Rightarrow x=\frac{{{y}^{2}}}{20}\Leftrightarrow y=\sqrt{20x}\)
Diện tích phân tô đậm ở góc phần tư thứ nhất là:
\(S=\int\limits_{0}^{20}{\left( \sqrt{20x}-\frac{{{x}^{2}}}{20} \right)dx}=\left( \frac{2}{3}\sqrt{20{{x}^{3}}}-\frac{{{x}^{3}}}{60} \right)\left| \begin{align}& ^{20} \\ & _{0} \\ \end{align} \right.=\frac{400}{3}.\)

Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.