Một người chơi trò gieo súc sắc. Mỗi ván gieo đồng thời ba con súc sắc. Người chơi thắng cuộc nếu xuất hiện ít nhất 2 mặt sáu chấm. Tính xác suất để trong ba ván, người đó thắng ít nhất hai ván.
Giải chi tiết:
Xác suất xuất hiện mặt 6 chấm là \(\dfrac{1}{6}\), xác suất không xuất hiện mặt 6 chấm là \(\dfrac{5}{6}.\)
Người đó chơi thắng nếu xuất hiện ít nhất 2 mặt sáu chấm:
TH1: 2 mặt sáu chấm, 1 mặt không phải sáu chấm \( \Rightarrow \) Xác suất là: \({\left( {\dfrac{1}{6}} \right)^2}.\dfrac{5}{6}\).
TH2: 3 mặt sáu chấm \( \Rightarrow \) Xác suất là \({\left( {\dfrac{1}{6}} \right)^3}\).
\( \Rightarrow \) Xác suất để người đó thắng cuộc: \({\left( {\dfrac{1}{6}} \right)^2}.\dfrac{5}{6} + {\left( {\dfrac{1}{6}} \right)^3} = \dfrac{1}{{36}}\), suy ra xác suất thua 1 ván là \(\dfrac{{35}}{{36}}\).
Vậy xác suất để trong 3 ván, người đó thắng ít nhất hai ván là \({\left( {\dfrac{1}{{36}}} \right)^3} + {\left( {\dfrac{1}{{36}}} \right)^2}.\dfrac{{35}}{{36}} = \dfrac{1}{{1296}}.\)
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.