[LỜI GIẢI] Một hộp đựng 9 thẻ được đánh số 1;2;3;4;5;6;7;8;9. Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số g - Tự Học 365
KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY

Hệ thống lại kiến thức lớp 10–11–12

Một hộp đựng 9 thẻ được đánh số 1;2;3;4;5;6;7;8;9. Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số g

Một hộp đựng 9 thẻ được đánh số 1;2;3;4;5;6;7;8;9. Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số g

Câu hỏi

Nhận biết

Một hộp đựng 9 thẻ được đánh số \(1;2;3;4;5;6;7;8;9\). Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để kết quả thu được là một số chẵn.


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Số phần tử của không gian mẫu \(n\left( \Omega  \right) = C_9^2\)

Gọi A là biến cố “rút ra hai thẻ có tích hai số ghi trên hai thẻ là số chẵn”

Khi đó hai thẻ đó hoặc cùng mang số chẵn, hoặc 1 thẻ mang số chẵn và 1 thẻ mang số lẻ.

Trong 9 thẻ đã cho có 4 thẻ mang số chẵn \(2;4;6;8\) và \(5\)thẻ mang số lẻ \(1;3;5;7;9\)

Nên số cách rút ra 2 thẻ mang số chẵn là \(C_4^2\)

Số cách rút ra 1 thẻ mang số chẵn và 1 thẻ mang số lẻ là \(C_4^1.C_5^1\)

Số phần tử của biến cố A là \(n\left( A \right) = C_4^2 + C_4^1.C_5^1\)

Xác suất cần tìm là \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{C_4^2 + C_4^1.C_5^1}}{{C_9^2}} = \dfrac{{13}}{{18}}\)

Chọn B.

Ý kiến của bạn