Một hộp có 3 bi xanh, 4 bi đỏ và 5 bi vàng. Chọn ngẫu nhiên 3 bi sao cho có đủ ba màu. Số cách chọn là:
Giải chi tiết:
Hộp bi đã cho có 3 màu là xanh, đỏ, vàng nên khi lấy ra 3 viên bi mà có đủ 3 màu thì tức là lấy ra mỗi màu một viên.
Số cách lấy ra 1 bi xanh là \(C_3^1\).
Số cách lấy ra 1 bi đỏ là \(C_4^1\).
Số cách lấy ra 1 bi vàng là \(C_5^1\).
Vậy số cách lấy ra 3 viên bi có đủ cả 3 màu là: \(C_3^1.C_4^1.C_5^1 = 60\) (cách).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.