Ôn đúng trọng tâm – Học chắc từ hôm nay
Hệ thống lại kiến thức lớp 10–11–12
Một chiếc hộp có mười một thẻ đánh số từ 0 đến 10. Rút ngẫu nhiên hai thẻ rồi nhân hai số ghi trên hai thẻ với nhau. Tính xác suất để kết quả nhận được là một số chẵn.
Giải chi tiết:
Gọi biến cố \(A:\) ‘‘Rút được hai thẻ ngẫu nhiên và tích hai số thẻ đó là một số chẵn’’.
\( \Rightarrow \overline A :\) ‘‘Rút được hai thẻ ngẫu nhiên và tích hai số thẻ đó là một số lẻ’’.
Rút ngẫu nhiên hai thẻ trong mười một thẻ ta có không gian mẫu là: \({n_\Omega } = C_{11}^2.\)
Tích của hai số ghi trên thẻ là một số lẻ khi ta rút được 2 thẻ đều được đánh số lẻ.
\( \Rightarrow {n_{\overline A }} = C_5^2\) cách rút.
\(\begin{array}{l} \Rightarrow P\left( {\overline A } \right) = \dfrac{{C_5^2}}{{C_{11}^2}} = \dfrac{2}{{11}}.\\ \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \dfrac{2}{{11}} = \dfrac{9}{{11}}.\end{array}\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.