Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \dfrac{{3x - 1}}{{{{\left( {x - 1} \right)}^2}}}\) trên khoảng \(\left( {1\,;\, + \infty } \right)\) là
Giải chi tiết:
Ta có
\(\int {f\left( x \right){\rm{d}}x = \int {\dfrac{{3x - 1}}{{{{\left( {x - 1} \right)}^2}}}{\rm{d}}x} } \)\( = \int {\dfrac{{3\left( {x - 1} \right) + 2}}{{{{\left( {x - 1} \right)}^2}}}{\rm{d}}x = \int {\left[ {\dfrac{3}{{x - 1}} + \dfrac{2}{{{{\left( {x - 1} \right)}^2}}}} \right]{\rm{d}}x} } \)\( = 3\ln \left| {x - 1} \right| - \dfrac{2}{{x - 1}} + C\)
Xét trên khoảng \(\left( {1\,;\, + \infty } \right)\)ta có \(\left| {x - 1} \right| = x - 1\) nên:
\(\int {f\left( x \right){\rm{d}}x = \int {\dfrac{{3x - 1}}{{{{\left( {x - 1} \right)}^2}}}{\rm{d}}x} } \)\( = 3\ln \left( {x - 1} \right) - \dfrac{2}{{x - 1}} + C\).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.