Họ tất cả các nguyên hàm của hàm số \(f \left( x \right) = \frac{{2x - 1}}{{{{ \left( {x + 1} \right)}^2}}} \) trên khoảng \( \left( { - 1; + \infty } \right) \) là:
Giải chi tiết:
Ta có:
\(\begin{array}{l}I = \int {\frac{{2x - 1}}{{{{\left( {x + 1} \right)}^2}}}dx} = \int {\frac{{2\left( {x + 1} \right) - 3}}{{{{\left( {x + 1} \right)}^2}}}dx} = \int {\frac{2}{{x + 1}}dx - } \int {\frac{3}{{{{\left( {x + 1} \right)}^2}}}dx} \\\,\,\,\, = 2\ln \left| {x + 1} \right| + \frac{3}{{x + 1}} + C = 2\ln \left( {x + 1} \right) + \frac{3}{{x + 1}} + C\,\,\,\,\,\left( {do\,\,x \in \left( { - 1; + \infty } \right) \Rightarrow x + 1 > 0} \right).\end{array}\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.