[LỜI GIẢI] Hệ số góc của tiếp tuyến với đồ thị hàm số y = d5x - 1x + 1 tại giao điểm với trục tung là - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Hệ số góc của tiếp tuyến với đồ thị hàm số y = d5x - 1x + 1 tại giao điểm với trục tung là

Hệ số góc của tiếp tuyến với đồ thị hàm số y = d5x - 1x + 1 tại giao điểm với trục tung là

Câu hỏi

Nhận biết

Hệ số góc của tiếp tuyến với đồ thị hàm số \(y = \dfrac{{5x - 1}}{{x + 1}}\) tại giao điểm với trục tung là


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

TXĐ : \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Giao điểm của đồ thị hàm số \(y = \dfrac{{5x - 1}}{{x + 1}}\) với trục tung có hoành độ là \(x = 0\).

Ta có: \(y = f\left( x \right) = \dfrac{{5x - 1}}{{x + 1}} \Rightarrow f'\left( x \right) = \dfrac{6}{{{{\left( {x + 1} \right)}^2}}}.\)

Do đó, hệ số góc của tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng 0 là \(f'\left( 0 \right) = \dfrac{6}{{{{\left( {0 + 1} \right)}^2}}} = 6\).

Chọn A.

Ý kiến của bạn