Hàm số \(y=x\sqrt{{{x}^{2}}+1}\) có đạo hàm cấp hai bằng:
Giải chi tiết:
\(\begin{align}y'=\sqrt{{{x}^{2}}+1}+x.\frac{2x}{2\sqrt{{{x}^{2}}+1}}=\frac{{{x}^{2}}+1+{{x}^{2}}}{\sqrt{{{x}^{2}}+1}}=\frac{2{{x}^{2}}+1}{\sqrt{{{x}^{2}}+1}} \\ y''=\frac{4x\sqrt{{{x}^{2}}+1}-\left( 2{{x}^{2}}+1 \right).\frac{2x}{2\sqrt{{{x}^{2}}+1}}}{{{x}^{2}}+1}=\frac{\frac{4x\left( {{x}^{2}}+1 \right)-x\left( 2{{x}^{2}}+1 \right)}{\sqrt{{{x}^{2}}+1}}}{{{x}^{2}}+1}=\frac{4{{x}^{3}}+4x-2{{x}^{3}}-x}{\left( {{x}^{2}}+1 \right)\sqrt{{{x}^{2}}+1}}=\frac{2{{x}^{3}}+3x}{\left( {{x}^{2}}+1 \right)\sqrt{{{x}^{2}}+1}} \\ \end{align}\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.