Hàm số \(y = 2{x^4} + 1\) đồng biến trên khoảng nào?
Giải chi tiết:
Phương pháp: Tìm khoảng đồng biến (nghịch biến) của 1 hàm số:
+ Tính \(y’\), giải phương trình \(y’ = 0\)
+ Giải các bất phương trình \(y’ > 0\) và \(y’ < 0\)
+ Khoảng đồng biến của hàm số là khoảng \((a;b)\) mà \(y' \geqslant 0,\forall x \in \left( {a;b} \right)\) và có hữu hạn giá trị \(x\) để \(y’ = 0\) . Tương tự với khoảng nghịch biến của hàm số.
Cách giải
Ta có \(y' = 8{x^3} = 0 \Leftrightarrow x = 0;y' > 0 \Leftrightarrow x > 0\)
Vậy hàm số đã cho đồng biến trên \(\left( {0; + \infty } \right)\)
Chọn đáp án A
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.