Hàm số nào sau đây nghịch biến trên \(\mathbb{R}?\)
Giải chi tiết:
Đáp án A: Hàm số có TXĐ \(D = \mathbb{R}\backslash \left\{ {k\pi } \right\}\) nên nó không nghịch biến trên \(\mathbb{R}\).
Đáp án B: \(y' = - 3{x^2} + 2x - 2\), có \(\Delta ' = 1 - \left( { - 3} \right).\left( { - 2} \right) = - 5 < 0\) và \(a = - 3 < 0\) nên \(y' < 0,\forall x \in \mathbb{R}\).
Do đó hàm số nghịch biến trên \(\mathbb{R}\).
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: =
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.