Hàm số nào sau đây không là nguyên hàm của hàm số \(f\left( x \right)=\frac{{{x}^{2}}+2x}{{{\left( x+1 \right)}^{2}}}\) ?
Giải chi tiết:
Ta có \(f\left( x \right)=\frac{{{x}^{2}}+2x}{{{\left( x+1 \right)}^{2}}}=\frac{{{\left( x+1 \right)}^{2}}-1}{{{\left( x+1 \right)}^{2}}}=1-\frac{1}{{{\left( x+1 \right)}^{2}}}\)
\(\Rightarrow \int{f\left( x \right)\,\text{d}x}=\int{\left( 1-\frac{1}{{{\left( x+1 \right)}^{2}}} \right)\,\text{d}x}=x+\frac{1}{x+1}+C=\frac{{{x}^{2}}+x+1}{x+1}+C\)
Với \(C=0,\) ta được \(\int{f\left( x \right)\,\text{d}x}=\frac{{{x}^{2}}+x+1}{x+1}\,\,\xrightarrow{{}}\) Đáp án B đúng.
Với \(C=-\,4,\) ta được \(\int{f\left( x \right)\,\text{d}x}=\frac{{{x}^{2}}+x+1}{x+1}-4=\frac{{{x}^{2}}-3x-3}{x+1}\,\,\xrightarrow{{}}\) Đáp án C đúng.
Với \(C=-\,2,\) ta được \(\int{f\left( x \right)\,\text{d}x}=\frac{{{x}^{2}}+x+1}{x+1}-2=\frac{{{x}^{2}}-x-1}{x+1}\,\,\xrightarrow{{}}\) Đáp án D đúng.
Vậy \(y=\frac{{{x}^{2}}+1}{x+1}\) không phải nguyên hàm của hàm số đã cho.
Chọn A
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.