Hàm số nào dưới đây có giá trị nhỏ nhất trên tập xác định?
Giải chi tiết:
Các hàm số đã cho đều có TXĐ:\(D = \mathbb{R}\)
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} - 3x + 2} \right) = - \infty \\\mathop {\lim }\limits_{x \to + \infty } \left( { - 2{x^3} + 3{x^2} - 1} \right) = - \infty \\\mathop {\lim }\limits_{x \to \pm \infty } \left( {{x^4} - 2{x^2} - 1} \right) = + \infty \\\mathop {\lim }\limits_{x \to \pm \infty } \left( { - {x^4} + 4{x^2}} \right) = - \infty \end{array}\)
Do đó, hàm số có giá trị nhỏ nhất trên tập xác định là \(y = {x^4} - 2{x^2} - 1\).
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.