[LỜI GIẢI] Gọi F( x ) = ( ax^3 + bx^2 + cx + d )e^x là một nguyên hàm của hàm số f( x ) = ( 2x^3 + 9x^2 - 2x + - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Gọi F( x ) = ( ax^3 + bx^2 + cx + d )e^x là một nguyên hàm của hàm số f( x ) = ( 2x^3 + 9x^2 - 2x +

Gọi F( x ) = ( ax^3 + bx^2 + cx + d )e^x là một nguyên hàm của hàm số f( x ) = ( 2x^3 + 9x^2 - 2x +

Câu hỏi

Nhận biết

Gọi \(F\left( x \right) = \left( {a{x^3} + b{x^2} + cx + d} \right){e^x}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^3} + 9{x^2} - 2x + 5} \right){e^x}\). Tính \({a^2} + {b^2} + {c^2} + {d^2}\)


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

\(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) nên ta có \(F'\left( x \right) = f\left( x \right)\)

Ta có:

\(\begin{array}{l}F'\left( x \right) = \left( {3a{x^2} + 2bx + c} \right){e^x} + \left( {a{x^3} + b{x^2} + cx + d} \right){e^x}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {a{x^3} + \left( {3a + b} \right){x^2} + \left( {2b + c} \right)x + c + d} \right){e^x}\end{array}\)

Do đó \(\left( {a{x^3} + \left( {3a + b} \right){x^2} + \left( {2b + c} \right)x + c + d} \right){e^x} = \left( {2{x^3} + 9{x^2} - 2x + 5} \right){e^x}\)

Đồng nhất hệ số ta có: \(\left\{ \begin{array}{l}a = 2\\3a + b = 9\\2b + c =  - 2\\c + d = 5\end{array} \right.\left\{ \begin{array}{l}a = 2\\b = 3\\c =  - 8\\d = 13\end{array} \right. \Rightarrow {a^2} + {b^2} + {c^2} = {d^2} = 246\).

Chọn D.

Ý kiến của bạn