Giải phương trình: log2(x2 + x + 1) + log2(x2 – x + 1) = log2(x4 + x2 +1) + log2(x4 – x2 + 1)
Giải chi tiết:
PT <=> log2(x2 + x + 1)(x2 – x + 1) = log2(x4 + x2 +1) + log2(x4 – x2 + 1)
<=> log2[(x2 + 1) + x][(x2 + 1)-x] = log2(x4 + x2 +1) + log2(x4 – x2 + 1)
<=> log2[(x2+ 1)2 – x2] = log2(x4 + x2 +1) + log2(x4 – x2 + 1)
<=> log2(x4 + 2x2 + 1 – x2) = log2(x4 + x2 +1) + log2(x4 – x2 + 1)
<=> log2(x4 + x2 + 1) = log2(x4 + x2 +1) + log2(x4 – x2 + 1)
<=> 0 = log2(x4 – x2 + 1) <=> x4 – x2 + 1 =2o <=> x4 – x2 = 0 <=> x2(x2 – 1) = 0.
<=>
Vậy phương trình có nghiệm là:
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.