Giá trị nhỏ nhất của hàm số \(y=2{{x}^{3}}+3{{x}^{2}}-12x+2\) trên đoạn \(\left[ -\,1;2 \right]\) đạt tại \(x={{x}_{0}}.\) Giá trị \({{x}_{0}}\) bằng bao nhiêu ?
Giải chi tiết:
Xét hàm số \(f\left( x \right)=2{{x}^{3}}+3{{x}^{2}}-12x+2\) trên \(\left[ -\,1;2 \right],\) có \({f}'\left( x \right)=6{{x}^{2}}+6x-12;\,\,\forall x\in \mathbb{R}.\)
Phương trình \({f}'\left( x \right)=0\Leftrightarrow 6{{x}^{2}}+6x-12=0\Leftrightarrow \ \left[ \begin{align} & x=1\ \ \ \in \left[ -1;\ 2 \right] \\ & x=-2\ \ \notin \left[ -1;\ 2 \right] \\ \end{align} \right..\)
Tính \(f\left( -\,1 \right)=15;\,\,f\left( 1 \right)=-\,5;\,\,f\left( 2 \right)=6.\)
Do đó, hàm số đạt giá trị nhỏ nhất là \(-\,5.\) Xảy ra khi \(x=1.\)
Chọn B
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.