Giả sử \(\left( {{x}_{0}};{{y}_{0}} \right)\)(nếu có) là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}x - \frac{1}{x} = y - \frac{1}{y}\,\,\,\,\,\,\left( 1 \right)\\2y = {x^3} + 1\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)Khi đó, khẳng định nào sau đây đúng.
Giải chi tiết:
Điều kiện: \(x.y\ne 0\)
Phương trình (1) \(x - \frac{1}{x} = y - \frac{1}{y} \Leftrightarrow x - y - \left( {\frac{1}{x}\frac{1}{y}} \right) = 0 \Leftrightarrow x - y - \frac{{y - x}}{{xy}} = 0 \Leftrightarrow \left( {x - y}\right)\left( {1 + \frac{1}{{xy}}} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = y\\y = \frac{{ - 1}}{x}\end{array} \right.\)
Với \(x=y\) thay vào (2) ta được \({x^3} - 2x + 1 = 0 \Leftrightarrow \left( {x - 1} \right)\left({{x^2} + x - 1} \right) = 0 \Rightarrow \left[ \begin{array}{l}x = y = 1\\x = y = \frac{{ - 1+ \sqrt 5 }}{2}\\x = y = \frac{{ - 1 - \sqrt 5 }}{2}\end{array} \right.\)
Với \(y=\frac{-1}{x}\) thay vào (2) ta được \({{x}^{4}}+x+2=0\Leftrightarrow {{\left( {{x}^{2}}-1 \right)}^{2}}+2{{\left( x+\frac{1}{4} \right)}^{2}}+\frac{7}{8}=0\) (vô nghiệm)
Kết luận: Vậy hệ phương trình có 3 nghiệm phân biệt \(\left( 1;1 \right),\left( \frac{-1+\sqrt{5}}{2};\frac{-1+\sqrt{5}}{2} \right),\left( \frac{-1-\sqrt{5}}{2};\frac{-1-\sqrt{5}}{2} \right)\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.