Đồ thị hàm số \(y= \dfrac{ \sqrt{x-1}+1}{{{x}^{2}}-4x-5} \) có tổng số bao nhiêu tiệm cận ngang và tiệm cận đứng?
Giải chi tiết:
ĐKXĐ: \(x\ge 1,x\ne 5\).
Ta có:
+) \(\underset{x\to +\infty }{\mathop{\lim }}\,\dfrac{\sqrt{x-1}+1}{{{x}^{2}}-4x-5}=0\) nên \(y=0\) là tiệm cận ngang của đồ thị hàm số.
+) \(\underset{x\to 5}{\mathop{\lim }}\,y=\underset{x\to 5}{\mathop{\lim }}\,\dfrac{\sqrt{x-1}+1}{{{x}^{2}}-4x-5}=+\infty \) nên \(x=5\) là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho chỉ có 2 tiệm cận.
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.