Đồ thị hàm số nào dưới đây có tiệm cận ngang ?
Giải chi tiết:
Dựa vào đáp án, ta thấy rằng:
\(y={{x}^{3}}-x-1\,\,\xrightarrow{{}}\,\,\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\left( {{x}^{3}}-x-1 \right)=\infty \,\,\Rightarrow \) ĐTHS không có TCN. \(y=\frac{{{x}^{3}}+1}{{{x}^{2}}+1}\,\,\xrightarrow{{}}\,\,\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\frac{{{x}^{3}}+1}{{{x}^{2}}+1}=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\frac{1+\frac{1}{{{x}^{3}}}}{\frac{1}{x}+\frac{1}{{{x}^{3}}}}=\infty \,\,\Rightarrow \) ĐTHS không có TCN. \(y=\frac{3{{x}^{2}}+2x-1}{4{{x}^{2}}+5}\,\,\xrightarrow{{}}\,\,\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\frac{3{{x}^{2}}+2x-1}{4{{x}^{2}}+5}=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\frac{3+\frac{2}{x}-\frac{1}{{{x}^{2}}}}{4+\frac{5}{{{x}^{2}}}}=\frac{3}{4}\)\(\Rightarrow y=\frac{3}{4}\) là TCN. \(y=\sqrt{2{{x}^{2}}+3}\,\,\xrightarrow{{}}\,\,\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\sqrt{2{{x}^{2}}+3}=\infty \,\,\Rightarrow \) ĐTHS không có TCN.
Chọn C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.