[LỜI GIẢI] Đồ thị hàm số nào dưới đây có tiệm cận ngang ? - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Đồ thị hàm số nào dưới đây có tiệm cận ngang ?

Đồ thị hàm số nào dưới đây có tiệm cận ngang ?

Câu hỏi

Nhận biết

Đồ thị hàm số nào dưới đây có tiệm cận ngang ?


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Dựa vào đáp án, ta thấy rằng:

\(y={{x}^{3}}-x-1\,\,\xrightarrow{{}}\,\,\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\left( {{x}^{3}}-x-1 \right)=\infty \,\,\Rightarrow \) ĐTHS không có TCN. \(y=\frac{{{x}^{3}}+1}{{{x}^{2}}+1}\,\,\xrightarrow{{}}\,\,\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\frac{{{x}^{3}}+1}{{{x}^{2}}+1}=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\frac{1+\frac{1}{{{x}^{3}}}}{\frac{1}{x}+\frac{1}{{{x}^{3}}}}=\infty \,\,\Rightarrow \) ĐTHS không có TCN. \(y=\frac{3{{x}^{2}}+2x-1}{4{{x}^{2}}+5}\,\,\xrightarrow{{}}\,\,\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\frac{3{{x}^{2}}+2x-1}{4{{x}^{2}}+5}=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\frac{3+\frac{2}{x}-\frac{1}{{{x}^{2}}}}{4+\frac{5}{{{x}^{2}}}}=\frac{3}{4}\)\(\Rightarrow y=\frac{3}{4}\) là TCN. \(y=\sqrt{2{{x}^{2}}+3}\,\,\xrightarrow{{}}\,\,\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,\,\infty }{\mathop{\lim }}\,\sqrt{2{{x}^{2}}+3}=\infty \,\,\Rightarrow \) ĐTHS không có TCN.

Chọn C

 

Ý kiến của bạn