[LỜI GIẢI] Diện tích hình phẳng giới hạn bởi y = căn 1 + ln x x; x = 1; x = e và trục hoành là S được biểu - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Diện tích hình phẳng giới hạn bởi y = căn 1 + ln x x; x = 1; x = e và trục hoành là S được biểu

Diện tích hình phẳng giới hạn bởi y = căn 1 + ln x x; x = 1; x = e và trục hoành là S được biểu

Câu hỏi

Nhận biết

Diện tích hình phẳng giới hạn bởi \(y = {{\sqrt {1 + \ln x} } \over x}; x = 1; x = e\) và trục hoành là \(S\) được biểu diễn dưới dạng \(S = {{a + 4\sqrt 2 } \over b},\) với \(a,\,\,b \in Q\) Tính tổng \(T = a + 2b.\)


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Do \({{\sqrt {1 + \ln x} } \over x} \ge 0;\,\,\forall x \in \left[ {1;\,\,e} \right] \Rightarrow \left| {{{\sqrt {1 + \ln x} } \over x}} \right| = {{\sqrt {1 + \ln x} } \over x}\), suy ra diện tích cần xác định là

\(S = \int\limits_1^e {\left| {{{\sqrt {1 + \ln x} } \over x}} \right|{\rm{d}}x}  = \int\limits_1^e {{{\sqrt {1 + \ln x} } \over x}{\rm{d}}x} \).

Đặt \(t = \sqrt {1 + \ln x}  \Rightarrow {t^2} = 1 + \ln x \Rightarrow 2t\,{\rm{d}}t = {{{\rm{d}}x} \over x}.\)

Khi \(\left\{ \matrix{  x = e\,\, \Rightarrow \,\,t = \sqrt 2  \hfill \cr   x = 1\, \Rightarrow t = 1 \hfill \cr}  \right..\) Vậy \(S = \int\limits_1^{\sqrt 2 } {t.2t\,{\rm{d}}t}  = \int\limits_1^{\sqrt 2 } {2{t^2}\,{\rm{d}}t}  = \left. {{2 \over 3}{t^3}} \right|_1^{\sqrt 2 } = {{4\sqrt 2  - 2} \over 3} = {{a + 4\sqrt 2 } \over b} \Rightarrow \left\{ \matrix{  a =  - \,2 \hfill \cr   b = 3 \hfill \cr}  \right..\)

Vậy tổng \(T = a + 2b =  - \,2 + 2.3 = 4.\)

Chọn C.

Ý kiến của bạn