Đạo hàm của hàm số \(y={{\left( 1-{{x}^{3}} \right)}^{5}}\) là :
Giải chi tiết:
\(y'=5{{\left( 1-{{x}^{3}} \right)}^{4}}.\left( 1-{{x}^{3}} \right)'=5{{\left( 1-{{x}^{3}} \right)}^{4}}.\left( -3{{x}^{2}} \right)=-15{{x}^{2}}{{\left( 1-{{x}^{3}} \right)}^{4}}\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.