Ôn đúng trọng tâm – Học chắc từ hôm nay
Hệ thống lại kiến thức lớp 10–11–12
Cho tứ diện SABC có SA = 4a và SA vuông góc với mặt phẳng (ABC). Tam giác ABC vuông tại B, có AB = a, BC= 3a. Diện tích mặt cầu ngoại tiếp tứ diện SABC bằng
Giải chi tiết:

Gọi O, I lần lượt là trung điểm của AC, SC.
Tam giác ABC vuông tại B \( \Rightarrow \) O là tâm đường tròn ngoại tiếp tam giác ABC.
IO là đường trung bình của tam giác SAC \( \Rightarrow IO//SA\)
Mà \(SA \bot \left( {ABC} \right) \Rightarrow IO \bot \left( {ABC} \right) \Rightarrow IA = IB = IC\) (1)
Tam giác SAC vuông tại A \( \Rightarrow IA = IS = IC\) (2)
Từ (1) và (2) suy ra I là tâm mặt cầu ngoại tiếp tứ diện SABC và bán kính mặt cầu \(R = \dfrac{{SC}}{2}\)
\(\Delta ABC\) vuông tại B \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {{\left( {3a} \right)}^2}} = a\sqrt {10} \)
\(\Delta SAC\) vuông tại A \( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {{{\left( {4a} \right)}^2} + {{\left( {\sqrt {10} a} \right)}^2}} = a\sqrt {26} \)
Diện tích mặt cầu ngoại tiếp tứ diện SABC bằng \(S = 4\pi {R^2} = 4\pi .{\left( {a \dfrac{\sqrt {26}}{2} } \right)^2} = 26\pi {a^2}\).
Chọn: D
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.