[LỜI GIẢI] Cho tứ diện đều ABCD. Gọi M là trung điểm của CD. Cosin của góc giữa hai đường thẳng AC và BM bằng : - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho tứ diện đều ABCD. Gọi M là trung điểm của CD. Cosin của góc giữa hai đường thẳng AC và BM bằng :

Cho tứ diện đều ABCD. Gọi M là trung điểm của CD. Cosin của góc giữa hai đường thẳng AC và BM bằng :

Câu hỏi

Nhận biết

Cho tứ diện đều ABCD. Gọi M là trung điểm của CD. Cosin của góc giữa hai đường thẳng AC và BM bằng :


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

 

 

 

Gọi N là trung điểm của AD ta có MN // AC

\( \Rightarrow \widehat {\left( {AC;BM} \right)} = \widehat {\left( {MN;BM} \right)}\)

\( \Rightarrow \cos \widehat {\left( {AC;BM} \right)} = \cos \widehat {\left( {MN;BM} \right)} = \left| {\cos \widehat {BMN}} \right|\)

Xét tam giác BMN có:

\(\cos \widehat {BMN} = \frac{{B{M^2} + M{N^2} - B{N^2}}}{{2BM.MN}} = \frac{{\frac{{3{a^2}}}{4} + \frac{{{a^2}}}{4} - \frac{{3{a^2}}}{4}}}{{2.\frac{{a\sqrt 3 }}{2}.\frac{a}{2}}} = \frac{{\sqrt 3 }}{6}\).

Vậy \(\cos \widehat {\left( {AC;BM} \right)} = \frac{{\sqrt 3 }}{6}\).

Chọn C.

Ý kiến của bạn